The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A219726 Integers of the form x^3 + 2y^3 (x, y > 0). 4
 3, 10, 17, 24, 29, 43, 55, 62, 66, 80, 81, 118, 127, 129, 136, 141, 155, 179, 192, 218, 232, 251, 253, 258, 270, 277, 314, 344, 345, 359, 375, 397, 433, 440, 459, 466, 471, 496, 514, 528, 557, 566, 593, 640, 648, 687, 694, 713, 731, 745, 750, 762, 775, 783 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS D. R. Heath-Brown proved in 2001 that there are infinitely many prime numbers in this sequence. These primes are in A173587. - Bernard Schott, Apr 07 2020 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 D. R. Heath-Brown, Primes represented by x^3 + 2y^3, Acta Mathematica 186 (2001), pp. 1-84. Wikipedia, Roger Heath-Brown MATHEMATICA m = 10^3; Union[Flatten@Table[x^3 + 2 y^3, {x, m^(1/3)}, {y, ((m - x^3)/2)^(1/3)}]] PROG (PARI) is(n)=for(y=1, sqrtnint((n-1)\2, 3), if(ispower(n-2*y^3, 3), return(1))); 0 \\ Charles R Greathouse IV, Apr 07 2020 (PARI) list(lim)=my(v=List(), Y); lim\=1; for(y=1, sqrtnint((lim-1)\2, 3), Y=2*y^3; for(x=1, sqrtnint(lim-Y, 3), listput(v, x^3+Y))); Set(v) \\ Charles R Greathouse IV, Apr 07 2020 CROSSREFS Cf. A173587, A219722, A219725. Sequence in context: A003072 A025395 A047702 * A017017 A297665 A309347 Adjacent sequences:  A219723 A219724 A219725 * A219727 A219728 A219729 KEYWORD nonn AUTHOR Zak Seidov, Nov 26 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 4 01:49 EDT 2020. Contains 334809 sequences. (Running on oeis4.)