OFFSET
1,1
COMMENTS
D. R. Heath-Brown proved in 2001 that there are infinitely many prime numbers in this sequence. These primes are in A173587. - Bernard Schott, Apr 07 2020
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
D. R. Heath-Brown, Primes represented by x^3 + 2y^3, Acta Mathematica 186 (2001), pp. 1-84.
Wikipedia, Roger Heath-Brown
MATHEMATICA
m = 10^3; Union[Flatten@Table[x^3 + 2 y^3, {x, m^(1/3)}, {y, ((m - x^3)/2)^(1/3)}]]
PROG
(PARI) is(n)=for(y=1, sqrtnint((n-1)\2, 3), if(ispower(n-2*y^3, 3), return(1))); 0 \\ Charles R Greathouse IV, Apr 07 2020
(PARI) list(lim)=my(v=List(), Y); lim\=1; for(y=1, sqrtnint((lim-1)\2, 3), Y=2*y^3; for(x=1, sqrtnint(lim-Y, 3), listput(v, x^3+Y))); Set(v) \\ Charles R Greathouse IV, Apr 07 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Nov 26 2012
STATUS
approved