

A219693


The number of symmetric positive definite 2 X 2 matrices whose entries are integers of absolute value at most n.


1



1, 10, 31, 68, 133, 226, 351, 512, 721, 986, 1303, 1676, 2125, 2642, 3231, 3896, 4665, 5522, 6479, 7532, 8701, 9986, 11383, 12896, 14553, 16354, 18287, 20364, 22605, 24994, 27543, 30248, 33145, 36226, 39479, 42908, 46557, 50402, 54439, 58680
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

A symmetric matrix [[a,c],[c,b]] is positive definite if and only if a > 0 and ab  c^2 > 0. So a(n) is also the number of triples (a,b,c) satisfying these inequalities with a,b,c having absolute value at most n.


LINKS

Table of n, a(n) for n=1..40.
Wikipedia, Positive Definite Matrix


MAPLE

a:=proc(n)
local x, y, z, count;
count:=0;
for x from 1 to n do
for y from 1 to n do
for z from n to n do
if x>0 and x*y > z^2 then count:=count+1; fi;
od:
od:
od:
count;
end:


MATHEMATICA

Table[cnt = 0; Do[If[a*b > c^2, cnt++], {a, n}, {b, n}, {c, n, n}]; cnt, {n, 40}] (* T. D. Noe, Nov 26 2012 *)


CROSSREFS

Sequence in context: A051943 A059306 A192023 * A297507 A283846 A163655
Adjacent sequences: A219690 A219691 A219692 * A219694 A219695 A219696


KEYWORD

nonn


AUTHOR

W. Edwin Clark, Nov 25 2012


STATUS

approved



