login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Greatest inverse of A219642; a(n) = maximal i such that A219642(i) = n.
8

%I #8 Nov 25 2012 23:50:22

%S 0,1,2,4,6,7,9,12,14,17,20,22,25,28,31,33,35,38,41,44,46,49,53,54,56,

%T 59,62,65,67,70,74,77,80,83,88,90,93,96,99,101,104,108,111,114,117,

%U 122,125,129,133,137,142,143,145,148,151,154,156,159,163,166,169

%N Greatest inverse of A219642; a(n) = maximal i such that A219642(i) = n.

%H A. Karttunen, <a href="/A219645/b219645.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n) = A219643(n)+A219644(n)-1.

%o (Scheme with _Antti Karttunen_'s Intseq-library, three different variants):

%o (define A219645 (PARTIALSUMS 1 0 (compose-funs A219644 1+)))

%o (define A219645v2 (compose-funs -1+ (LEAST-I-WITH-FUN-I-EQ-N 0 0 A219642) 1+)) ;; Slow.

%o (define (A219645v3 n) (+ (A219643 n) (A219644 n) -1))

%Y Cf. A219643 for the least inverse. A219644 gives the first differences.

%Y This sequence is based on Fibonacci number system (Zeckendorf expansion): A014417. Analogous sequence for binary system: A173601, for factorial number system: A219655.

%K nonn

%O 0,3

%A _Antti Karttunen_, Nov 24 2012