login
A219645
Greatest inverse of A219642; a(n) = maximal i such that A219642(i) = n.
8
0, 1, 2, 4, 6, 7, 9, 12, 14, 17, 20, 22, 25, 28, 31, 33, 35, 38, 41, 44, 46, 49, 53, 54, 56, 59, 62, 65, 67, 70, 74, 77, 80, 83, 88, 90, 93, 96, 99, 101, 104, 108, 111, 114, 117, 122, 125, 129, 133, 137, 142, 143, 145, 148, 151, 154, 156, 159, 163, 166, 169
OFFSET
0,3
LINKS
FORMULA
a(n) = A219643(n)+A219644(n)-1.
PROG
(Scheme with Antti Karttunen's Intseq-library, three different variants):
(define A219645 (PARTIALSUMS 1 0 (compose-funs A219644 1+)))
(define A219645v2 (compose-funs -1+ (LEAST-I-WITH-FUN-I-EQ-N 0 0 A219642) 1+)) ;; Slow.
(define (A219645v3 n) (+ (A219643 n) (A219644 n) -1))
CROSSREFS
Cf. A219643 for the least inverse. A219644 gives the first differences.
This sequence is based on Fibonacci number system (Zeckendorf expansion): A014417. Analogous sequence for binary system: A173601, for factorial number system: A219655.
Sequence in context: A157202 A282896 A141437 * A186708 A227697 A097457
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 24 2012
STATUS
approved