login
A219605
Square array T(n,k), read by antidiagonals: T(n,2*k) = T(n,2*k-1)*n, T(n,2*k+1) = T(n,2*k)+n, T(n,0) = 1.
2
1, 1, 1, 0, 2, 1, 0, 2, 3, 1, 0, 3, 6, 4, 1, 0, 3, 8, 12, 5, 1, 0, 4, 16, 15, 20, 6, 1, 0, 4, 18, 45, 24, 30, 7, 1, 0, 5, 36, 48, 96, 35, 42, 8, 1, 0, 5, 38, 144, 100, 175, 48, 56, 9, 1, 0, 6, 76, 147, 400, 180, 288, 63, 72, 10, 1, 0, 6, 78, 441, 404, 900, 294, 441
OFFSET
0,5
FORMULA
T(n,0) = A000012(n).
T(n,1) = A000027(n).
T(n,2) = A002378(n+1).
T(n,3) = A005563(n).
T(n,4) = A152618(n+1).
T(n,5) = A045991(n+1).
T(n,6) = A035287(n+1).
T(0,k) = A019590(k+1).
T(1,k) = A008619(k+1).
T(2,k) = A123208(k).
EXAMPLE
Square array begins:
1..1....0....0....0....0....0....0.....0.....0...
1..2....2....3....3....4....4....5.....5.....5...
1..3....6....8...16...18...36...38....76....78...
1..4...12...15...45...48..144..147...441...444...
1..5...20...24...96..100..400..404..1616..1620...
1..6...30...35..175..180..900..905..4525..4530...
1..7...42...48..288..294.1764.1770.10620.10626...
1..8...56...63..441..448.3136.3143.22001.22008...
1..9...72...80..640..648.5184.5192.41536.41544...
1.10...90...99..891..900.8100.8109.72971.72980...
...
MATHEMATICA
t[n_, k_] /; n < 0 || k < 0 = 0; t[n_, 0] = 1; t[n_, 1] = n+1; t[0, k_ /; k > 1] = 0; t[n_?Positive, k_?EvenQ] := t[n, k] = t[n, k-1]*n; t[n_?Positive, k_?OddQ] := t[n, k] = t[n, k-1] + n; Table[t[n-k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 19 2013 *)
CROSSREFS
Sequence in context: A261897 A131084 A143067 * A356027 A123949 A236358
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Apr 12 2013
STATUS
approved