login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A219601 Number of partitions of n in which no parts are multiples of 6. 13
1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 37, 49, 65, 85, 111, 143, 184, 234, 297, 374, 470, 586, 729, 902, 1113, 1367, 1674, 2042, 2485, 3013, 3645, 4395, 5288, 6344, 7595, 9070, 10809, 12852, 15252, 18062, 21352, 25191, 29671, 34884, 40948, 47985, 56146, 65592 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also partitions where parts are repeated at most 5 times. [Joerg Arndt, Dec 31 2012]

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Arkadiusz Wesolowski)

Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 15.

Eric Weisstein's World of Mathematics, Partition Function b_k

FORMULA

G.f.: P(x^6)/P(x), where P(x) = prod(k>=1, 1-x^k).

a(n) ~ Pi*sqrt(5) * BesselI(1, sqrt(5*(24*n + 5)/6) * Pi/6) / (3*sqrt(24*n + 5)) ~ exp(Pi*sqrt(5*n)/3) * 5^(1/4) / (12 * n^(3/4)) * (1 + (5^(3/2)*Pi/144 - 9/(8*Pi*sqrt(5))) / sqrt(n) + (125*Pi^2/41472 - 27/(128*Pi^2) - 25/128) / n). - Vaclav Kotesovec, Aug 31 2015, extended Jan 14 2017

a(n) = (1/n)*Sum_{k=1..n} A284326(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017

EXAMPLE

7 = 7

  = 5 + 2

  = 5 + 1 + 1

  = 4 + 3

  = 4 + 2 + 1

  = 4 + 1 + 1 + 1

  = 3 + 3 + 1

  = 3 + 2 + 2

  = 3 + 2 + 1 + 1

  = 3 + 1 + 1 + 1 + 1

  = 2 + 2 + 2 + 1

  = 2 + 2 + 1 + 1 + 1

  = 2 + 1 + 1 + 1 + 1 + 1

  = 1 + 1 + 1 + 1 + 1 + 1 + 1

so a(7) = 14.

MATHEMATICA

m = 47; f[x_] := (x^6 - 1)/(x - 1); g[x_] := Product[f[x^k], {k, 1, m}]; CoefficientList[Series[g[x], {x, 0, m}], x] (* Arkadiusz Wesolowski, Nov 27 2012 *)

PROG

(PARI) for(n=0, 47, A=x*O(x^n); print1(polcoeff(eta(x^6+A)/eta(x+A), n), ", "))

CROSSREFS

Cf. A097797.

Cf. A000009 (m=2), A000726 (m=3), A001935 (m=4), A035959 (m=5), A035985 (m=7), A261775 (m=8), A104502 (m=9), A261776 (m=10).

Cf. A261770, A261736, A320608.

Sequence in context: A123630 A035967 A097797 * A035975 A035984 A035994

Adjacent sequences:  A219598 A219599 A219600 * A219602 A219603 A219604

KEYWORD

easy,nonn

AUTHOR

Arkadiusz Wesolowski, Nov 23 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 26 23:16 EDT 2019. Contains 321566 sequences. (Running on oeis4.)