login
A219564
Sum(binomial(n+k,k)^6, k=0..n).
7
1, 65, 47386, 65004097, 119498671876, 260128695981674, 632156164654144530, 1659900189891175027265, 4616088190888638302435080, 13418259230056806455830305940, 40401802613222456104862752944356, 125182282922559710456869140648653290, 397195659937314116991934285462527257236
OFFSET
0,2
FORMULA
a(n) ~ 2^(12*n+6)/(63*Pi^3*n^3)
Generally (for q > 0), Sum_{k=0..n} C(n + k,k)^q is asymptotic to 2^((2*n+1)*q)/((2^q-1)*(Pi*n)^(q/2)) * (1 - q/(2*n)*(1/4+1/(2^q-1)^2) + O(1/n^2))
MATHEMATICA
Table[Sum[Binomial[n+k, k]^6, {k, 0, n}], {n, 0, 20}]
CROSSREFS
Cf. A001700 (q=1), A112029 (q=2), A112028 (q=3), A219562 (q=4), A219563 (q=5).
Sequence in context: A177652 A278795 A289946 * A183238 A103345 A291456
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 23 2012
STATUS
approved