login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A219555 Number of bipartite partitions of (i,j) with i+j = n into distinct pairs. 10
1, 2, 4, 10, 19, 38, 73, 134, 242, 430, 749, 1282, 2171, 3622, 5979, 9770, 15802, 25334, 40288, 63560, 99554, 154884, 239397, 367800, 561846, 853584, 1290107, 1940304, 2904447, 4328184, 6422164, 9489940, 13967783, 20480534, 29920277, 43557272, 63194864 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..1000 (first 100 terms from Alois P. Heinz)

FORMULA

a(n) = Sum_{i+j=n} [x^i*y^j] 1/2 * Product_{k,m>=0} (1+x^k*y^m).

G.f.: Product_{k>=1} (1+x^k)^(k+1). - Vaclav Kotesovec, Mar 07 2015

a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4 / (1296*Zeta(3)) + Pi^2 * n^(1/3) / (2^(5/3) * 3^(4/3) * Zeta(3)^(1/3)) + (3/2)^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(5/4) * 3^(1/3) * sqrt(Pi) * n^(2/3)), where Zeta(3) = A002117. - Vaclav Kotesovec, Mar 07 2015

G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k*(2 - x^k)/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, Aug 11 2018

EXAMPLE

a(2) = 4: [(2,0)], [(1,1)], [(1,0),(0,1)], [(0,2)].

MATHEMATICA

nmax=50; CoefficientList[Series[Product[(1+x^k)^(k+1), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2015 *)

CROSSREFS

Row sums of A054242.

Cf. A026007, A052812, A005380, A255834, A255836.

Sequence in context: A253772 A043330 A295961 * A263738 A011963 A083844

Adjacent sequences:  A219552 A219553 A219554 * A219556 A219557 A219558

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Nov 22 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 13:22 EDT 2018. Contains 315389 sequences. (Running on oeis4.)