login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A219531 Sum C(n, k), k = 0 .. 11. 11
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4095, 8178, 16278, 32192, 63019, 121670, 230964, 430104, 784626, 1401292, 2449868, 4194304, 7036530, 11576916, 18696432, 29666704, 46295513, 71116846, 107636402, 160645504, 236618693, 344212906, 494889092 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) is the number of compositions (ordered partitions) of n+1 into twelve or fewer parts. a(n) = sum(binomial(n + 1, 2k - 1), for k = 1 .. 6). a(n) is the sum of the first twelve terms in the n-th row of Pascal's triangle.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

FORMULA

a(n) = 1 + (n^11 - 44*n^10 + 935*n^9 - 11550*n^8 + 94083*n^7 - 497112*n^6 + 1870385*n^5 - 3920950*n^4 + 8550916*n^3 + 4429656*n^2 + 29400480*n)/11!. a(n) = 2*a(n - 1), for 1 <= n <= 11 with a(0) = 1, a(n) = 2*a(n - 1) - C(n - 1, 11), for n > 11. - Mohamed

G.f.: (1 - 10x + 46x^2 - 128x^3 + 239x^4 - 314x^5 + 296x^6 - 200x^7 + 95x^8 - 30x^9 + 6x^10) / (1 - x)^12. - Mokhtar Mohamed, Nov 23 2012

MATHEMATICA

Table[Sum[Binomial[n, k], {k, 0, 11}], {n, 0, 40}] (* T. D. Noe, Nov 23 2012 *)

PROG

(Haskell)

a219531 = sum . take 12 . a007318_row  -- Reinhard Zumkeller, Nov 24 2012

(Python)

A219531_list, m = [], [1, -9, 37, -91, 148, -166, 130, -70, 25, -5, 1, 1]

for _ in range(10**2):

    A219531_list.append(m[-1])

    for i in range(11):

        m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016

CROSSREFS

Cf. A000127, A006261, A008859, A008860, A008861, A008862, A008863.

Cf. A007318.

Sequence in context: A295081 A227843 A271482 * A168083 A221180 A219615

Adjacent sequences:  A219528 A219529 A219530 * A219532 A219533 A219534

KEYWORD

nonn,easy

AUTHOR

Mokhtar Mohamed, Nov 21 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 12 20:04 EST 2017. Contains 295954 sequences.