login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A219531 Sum C(n, k), k = 0 .. 11. 11
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4095, 8178, 16278, 32192, 63019, 121670, 230964, 430104, 784626, 1401292, 2449868, 4194304, 7036530, 11576916, 18696432, 29666704, 46295513, 71116846, 107636402, 160645504, 236618693, 344212906, 494889092 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) is the number of compositions (ordered partitions) of n+1 into twelve or fewer parts. a(n) = sum(binomial(n + 1, 2k - 1), for k = 1 .. 6). a(n) is the sum of the first twelve terms in the n-th row of Pascal's triangle.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

FORMULA

a(n) = 1 + (n^11 - 44*n^10 + 935*n^9 - 11550*n^8 + 94083*n^7 - 497112*n^6 + 1870385*n^5 - 3920950*n^4 + 8550916*n^3 + 4429656*n^2 + 29400480*n)/11!. a(n) = 2*a(n - 1), for 1 <= n <= 11 with a(0) = 1, a(n) = 2*a(n - 1) - C(n - 1, 11), for n > 11. - Mohamed

G.f.: (1 - 10x + 46x^2 - 128x^3 + 239x^4 - 314x^5 + 296x^6 - 200x^7 + 95x^8 - 30x^9 + 6x^10) / (1 - x)^12. - Mokhtar Mohamed, Nov 23 2012

MATHEMATICA

Table[Sum[Binomial[n, k], {k, 0, 11}], {n, 0, 40}] (* T. D. Noe, Nov 23 2012 *)

PROG

(Haskell)

a219531 = sum . take 12 . a007318_row  -- Reinhard Zumkeller, Nov 24 2012

(Python)

A219531_list, m = [], [1, -9, 37, -91, 148, -166, 130, -70, 25, -5, 1, 1]

for _ in range(10**2):

    A219531_list.append(m[-1])

    for i in range(11):

        m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016

CROSSREFS

Cf. A000127, A006261, A008859, A008860, A008861, A008862, A008863.

Cf. A007318.

Sequence in context: A295081 A227843 A271482 * A168083 A221180 A219615

Adjacent sequences:  A219528 A219529 A219530 * A219532 A219533 A219534

KEYWORD

nonn,easy

AUTHOR

Mokhtar Mohamed, Nov 21 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 02:39 EST 2019. Contains 320140 sequences. (Running on oeis4.)