The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A219531 a(n) = Sum_{k=0..11} C(n, k). 11
 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4095, 8178, 16278, 32192, 63019, 121670, 230964, 430104, 784626, 1401292, 2449868, 4194304, 7036530, 11576916, 18696432, 29666704, 46295513, 71116846, 107636402, 160645504, 236618693, 344212906, 494889092 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is the number of compositions (ordered partitions) of n+1 into twelve or fewer parts. a(n) = sum(binomial(n + 1, 2k - 1), for k = 1 .. 6). a(n) is the sum of the first twelve terms in the n-th row of Pascal's triangle. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1). FORMULA a(n) = 1 + (n^11 - 44*n^10 + 935*n^9 - 11550*n^8 + 94083*n^7 - 497112*n^6 +1870385*n^5 -3920950*n^4 +8550916*n^3 +4429656*n^2 +29400480*n)/11!. a(n) = 2*a(n - 1), for 1 <= n <= 11 with a(0) = 1, a(n) = 2*a(n - 1) - C(n - 1, 11), for n > 11. - Mohamed G.f.: (1 - 10*x + 46*x^2 - 128*x^3 + 239*x^4 - 314*x^5 + 296*x^6 - 200*x^7 + 95*x^8 - 30*x^9 + 6*x^10)/(1-x)^12. - Mokhtar Mohamed, Nov 23 2012 MAPLE seq(sum(binomial(n, j), j=0..11), n=0..40); # G. C. Greubel, Sep 13 2019 MATHEMATICA Table[Sum[Binomial[n, k], {k, 0, 11}], {n, 0, 40}] (* T. D. Noe, Nov 23 2012 *) LinearRecurrence[{12, -66, 220, -495, 792, -924, 792, -495, 220, -66, 12, -1}, {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}, 40] (* Harvey P. Dale, Sep 19 2019 *) PROG (Haskell) a219531 = sum . take 12 . a007318_row  -- Reinhard Zumkeller, Nov 24 2012 (Python) A219531_list, m = [], [1, -9, 37, -91, 148, -166, 130, -70, 25, -5, 1, 1] for _ in range(10**2):     A219531_list.append(m[-1])     for i in range(11):         m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016 (PARI) vector(40, n, sum(j=0, 11, binomial(n-1, j))) \\ G. C. Greubel, Sep 13 2019 (MAGMA) [(&+[Binomial(n, k): k in [0..11]]): n in [0..40]]; // G. C. Greubel, Sep 13 2019 (Sage) [sum(binomial(n, k) for k in (0..11)) for n in (0..40)] # G. C. Greubel, Sep 13 2019 (GAP) List([0..40], n-> Sum([0..11], k-> Binomial(n, k)) ); # G. C. Greubel, Sep 13 2019 CROSSREFS Cf. A000127, A006261, A008859, A008860, A008861, A008862, A008863. Cf. A007318. Sequence in context: A227843 A271482 A335890 * A168083 A221180 A219615 Adjacent sequences:  A219528 A219529 A219530 * A219532 A219533 A219534 KEYWORD nonn,easy AUTHOR Mokhtar Mohamed, Nov 21 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 10:49 EDT 2020. Contains 336198 sequences. (Running on oeis4.)