login
A219528
Primes neighboring a 3-smooth number.
6
2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 47, 53, 71, 73, 97, 107, 109, 127, 163, 191, 193, 257, 383, 431, 433, 487, 577, 647, 769, 863, 971, 1151, 1153, 1297, 1459, 2591, 2593, 2917, 3457, 3889, 4373, 6143, 6911, 8191, 8747, 10369, 12289, 13121, 15551, 17497, 18433, 23327, 27647, 39367, 52489, 62207, 65537, 73727
OFFSET
1,1
COMMENTS
Prime numbers of the form of 2^j*3^k +/- 1, which may be called "Near-3-smooth primes".
Such prime numbers can often be proved prime by OpenPFGW.
EXAMPLE
a(1)=2=1+1, where A003586[1]=1;
a(2)=3=2+1, where A003586[2]=2;
...
a(59)=73727=2^13*3^2-1, where A003586[97]=2^13*3^2=73728
MATHEMATICA
f[n_] := Block[{p2, p3 = 3^Range[0, Floor@ Log[3, n] + 1]}, p2 = 2^Floor[Log[2, n/p3] + 1]; Min[ Select[ p2*p3, IntegerQ]]];
a={}; ct=0; tsm=1; While[ct<59, cp=tsm-1; If[(PrimeQ[cp])&&(!MemberQ[a, cp]), a=Append[a, cp]; ct++]; cp=cp+2; If[(PrimeQ[cp])&&(!MemberQ[a, cp]), a=Append[a, cp]; ct++]; tsm=f[tsm]]; Print[a]
PROG
(PARI) list(lim)=my(v=List([2]), N); for(n=0, log(lim\2)\log(3), N=2*3^n; while(N<=lim, if(ispseudoprime(N-1), listput(v, N-1)); if(ispseudoprime(N+1), listput(v, N+1)); N<<=1)); vecsort(Vec(v), , 8) \\ Charles R Greathouse IV, Nov 21 2012
CROSSREFS
Sequence in context: A303436 A334797 A229060 * A341660 A033875 A105581
KEYWORD
nonn
AUTHOR
Lei Zhou, Nov 21 2012
STATUS
approved