login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of 6Xn arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..1 6Xn array
1

%I #4 Nov 21 2012 05:14:47

%S 7,15,74,465,2125,9292,37442,146163,554185,2025086,7113545,23974181,

%T 77690406,242798386,733943376,2151321628,6127503021,16989704367,

%U 45932207763,121260063820,313015935010,791017133814,1959057933111

%N Number of 6Xn arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..1 6Xn array

%C Row 6 of A219519

%H R. H. Hardin, <a href="/A219523/b219523.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = (1/10333147966386144929666651337523200000000)*n^35 - (1/29523279903960414084761860964352000000)*n^34 + (61/5788878412541257663678796267520000000)*n^33 - (229/98674063850135073812706754560000000)*n^32 + (21787/50602084025710294262926540800000000)*n^31 - (7697/115746702463501552859480064000000)*n^30 + (785767981/89124960896896195701799649280000000)*n^29 - (12262561/12195533784468554420060160000000)*n^28 + (48314581657/487821351378742176802406400000000)*n^27 - (245182959041/29269281082724530608144384000000)*n^26 + (582606820043/971228029894328315805696000000)*n^25 - (217521122153737/6191578690576343013261312000000)*n^24 + (17255706612998819773/11268673216848944284135587840000000)*n^23 - (3969387378240839/127257743837932741774540800000)*n^22 - (948399883983541991/424192479459775805915136000000)*n^21 + (554793661807585003/1701306735801239863296000000)*n^20 - (271260606648361279201391/11094264847409521077780480000000)*n^19 + (123053036797554708426697/91089753483993962533355520000)*n^18 - (6283429253036687596286873581/106896504823863503090614272000000)*n^17 + (60068223013208967643606567/29826033712015486353408000000)*n^16 - (4471497680373555887195897199029/87489698888578759969996800000000)*n^15 + (1896409538897788242613596607327/2624690966657362799099904000000)*n^14 + (160170795236717659468816376954201/15478946726440857533153280000000)*n^13 - (72352191783197242910804705194541/65961420709265017896960000000)*n^12 + (1259258806466705069732091179346770473/30012446422715583143116800000000)*n^11 - (22307606743799390366466272261503061/20787841678071399579648000000)*n^10 + (866699612577308238824016124027951799/44836521266428508897280000000)*n^9 - (284271553091628685932040620315311159/1323300106821674741760000000)*n^8 + (321095870488437210935837966277147739/3279974623746031411200000000)*n^7 + (1281185590628544666884744796547777103/23688705615943560192000000)*n^6 - (658754164273482968835981172916338402084271/508904462747315503604736000000)*n^5 + (64005575844906944283904692926158114339/3563756741927979717120000)*n^4 - (1008226574811939900812388929656087642397/6130510109626107965760000)*n^3 + (2599884447896121494946453877727831/2680707555916790400)*n^2 - (14646211686805596893562842932/4512611027925)*n + 4284164824726022 for n>45

%e Some solutions for n=3

%e ..0..0..0....0..0..1....0..0..1....0..0..1....0..0..0....0..0..0....0..0..1

%e ..0..0..0....0..0..1....0..0..0....0..0..1....0..0..0....0..0..0....0..0..1

%e ..1..0..0....0..0..1....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0

%e ..1..0..1....0..0..1....0..0..0....0..0..0....1..0..0....1..0..1....0..0..0

%e ..1..1..1....0..0..1....1..0..1....0..1..0....1..0..1....1..1..1....0..0..0

%e ..1..1..1....0..0..1....1..1..1....1..1..1....1..1..1....1..1..1....0..1..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Nov 21 2012