%I
%S 5,9,26,58,107,179,281,421,608,852,1164,1556,2041,2633,3347,4199,5206,
%T 6386,7758,9342,11159,13231,15581,18233,21212,24544,28256,32376,36933,
%U 41957,47479,53531,60146,67358,75202,83714,92931,102891,113633,125197
%N Number of n X 5 arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..1 n X 5 array.
%C Column 5 of A219502.
%H R. H. Hardin, <a href="/A219499/b219499.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/24)*n^4 + (1/4)*n^3 + (35/24)*n^2 + (21/4)*n  13 for n>2.
%F Conjectures from _Colin Barker_, Jul 26 2018: (Start)
%F G.f.: x*(5  16*x + 31*x^2  32*x^3 + 12*x^4 + 4*x^5  3*x^6) / (1  x)^5.
%F a(n) = 5*a(n1)  10*a(n2) + 10*a(n3)  5*a(n4) + a(n5) for n>7.
%F (End)
%e Some solutions for n=3:
%e ..1..0..0..0..0....0..0..0..0..0....1..1..1..0..0....0..0..0..0..0
%e ..1..0..0..0..0....1..0..0..0..0....1..1..1..1..0....1..0..0..0..0
%e ..1..1..0..0..0....1..1..1..1..1....1..1..1..1..1....1..1..1..0..0
%Y Cf. A219502.
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 20 2012
