%I #4 Nov 19 2012 05:36:35
%S 10,60,618,4544,28365,158473,811802,3839485,16870880,69358382,
%T 268604388,985807950,3446787865,11533987238,37089093539,115015828102,
%U 345034056109,1004006049426,2840598026377,7830418088592,21069626662016,55427938794648
%N Number of nX3 arrays of the minimum value of corresponding elements and their horizontal or vertical neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..3 nX3 array
%C Column 3 of A219373
%H R. H. Hardin, <a href="/A219368/b219368.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/10896304530554189828333483835418214400000000)*n^38 + (1/101204066847252537105264555746918400000000)*n^37 - (1/1859966633949506087339997240754176000000)*n^36 + (59/7749860974789608697249988503142400000000)*n^35 + (17053/2214245992797031056357139572326400000000)*n^34 - (25031/130249764282178297432772916019200000000)*n^33 - (937/218121614826614373691246510080000000)*n^32 + (3546779/2390948470214811403923279052800000000)*n^31 - (10174729/211085433703175200346367590400000000)*n^30 + (58622327/19374991499325259935173836800000000)*n^29 - (246375131/4829431378649547550343823360000000)*n^28 - (3699393059/635451497190729940834713600000000)*n^27 + (10677698725781/11268673216848944284135587840000000)*n^26 - (4659211736383979/101418058951640498557220290560000000)*n^25 + (7535489986746049/10141805895164049855722029056000000)*n^24 + (456604535739885157/8451504912636708213101690880000000)*n^23 - (2798465677648464203/649014493573456983050158080000000)*n^22 + (6323782285993324861/38177323151379822532362240000000)*n^21 - (189168212533682150343863/51791356587161867247402614784000000)*n^20 + (39603254042441090009159/1572612042120299612775383040000000)*n^19 + (3413835387384330877612147177/2248835220232028446268797747200000000)*n^18 - (3047431950188947849944176993/44094808239843695024878387200000000)*n^17 + (7790921525070780057858161/5174390762838800946796953600000)*n^16 - (123974746239053008071706008743/9055183834967901656894668800000000)*n^15 - (508696572988078078657761504239/1668060180125666094691123200000000)*n^14 + (1665820033848463897252857389337457/95079430267162967397394022400000000)*n^13 - (253216209674976590564605679977/516960799625722963230720000000)*n^12 + (406497563674999675544284846702043/40016595230287444190822400000000)*n^11 - (84205514027502439771075642555271921/497349112147858234943078400000000)*n^10 + (743891833591921578018917507527921/323163815560661621145600000000)*n^9 - (13906445216484525555222201130016418167/549616819767100743893114880000000)*n^8 + (12928081722893225517913396619648389/58916132810983271577600000000)*n^7 - (69507283139277050360269813125142342519/48663989250212045032202880000000)*n^6 + (1132895134411052578564824474127757/184787386618487837184000000)*n^5 - (12733505674101906439122095036776093/1544888547625779207371520000)*n^4 - (400032501945328450869016893926891/4087006739750738643840000)*n^3 + (35276244656875875399422500303867/44421238992652586064000)*n^2 - (609326964728838228578429/222622144044300)*n + 3931208880 for n>14
%e Some solutions for n=3
%e ..0..0..2....2..2..3....0..0..2....2..2..2....0..0..1....1..1..3....0..0..1
%e ..0..0..3....2..0..0....0..1..3....2..2..3....0..1..3....1..1..1....0..0..1
%e ..0..1..1....0..0..0....1..2..3....3..3..3....2..2..3....1..1..1....0..1..1
%K nonn
%O 1,1
%A _R. H. Hardin_ Nov 19 2012