login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers that can be expressed as the sum of three nonnegative cubes in three ways.
1

%I #30 Jan 19 2019 04:14:58

%S 5104,5832,9288,9729,10261,10773,12104,12221,12384,14175,17604,17928,

%T 19034,20691,21412,21888,24416,24480,28792,29457,30528,31221,32850,

%U 34497,35216,36288,38259,39339,39376,39528,40060,40097,40832,40851,41033,41040,41364

%N Numbers that can be expressed as the sum of three nonnegative cubes in three ways.

%C Index of A051343 = 9, superset of index of A025456 = 3.

%C Subset of A001239.

%H Christian N. K. Anderson, <a href="/A219329/b219329.txt">Table of n, a(n) for n = 1..10000</a>

%H Christian N. K. Anderson, <a href="/A219329/a219329.txt">Decomposition</a> of the first 10000 terms into 3 sets of cube triples

%H <a href="https://oeis.org/index/Su#ssq">Sequences related to sums of squares and cubes</a>

%e a(1) = 5104 = 1^3+12^3+15^3 = 2^3+10^3+16^3 = 9^3+10^3+15^3.

%t Select[Range[42000],Length[PowersRepresentations[#,3,3]]==3&] (* _Harvey P. Dale_, Sep 28 2016 *)

%Y Other sums of cubes: A025402, A025398, A024974, A001239, A008917.

%Y Cf. A025456, A051343.

%Y Cf. A025396.

%K nonn

%O 1,1

%A _Kevin L. Schwartz_ and _Christian N. K. Anderson_, Apr 11 2013