login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A219324 Positive integers n that are equal to the determinant of the circulant matrix formed by the decimal digits of n. 14
1, 2, 3, 4, 5, 6, 7, 8, 9, 247, 370, 378, 407, 481, 518, 592, 629, 1360, 3075, 26027, 26933, 45018, 69781, 80487, 154791, 1920261, 2137616, 2716713, 3100883, 3480140, 3934896, 4179451, 4830936, 5218958, 11955168, 80651025, 95738203, 257059332, 278945612, 456790123, 469135802, 493827160, 494376160 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Belukhov proved that if d is an odd divisor of p-1, then for integers q=(p^d-1)/((p-1)*d) and t such that (p-1)*(d-1)/2 < t < (p-1)*(d+1)/2 and gcd(t,d)=1, the number q*t equals the determinant of the circulant matrix formed by its base-p digits. For this sequence (where p=10), not every term can be obtained in this way.

If you rotate left (or take the absolute value of the determinant), then the sequence contains the following additional terms: 48, 1547, 123823, 289835, 23203827, ... (cf. A219326, A219327). - Robert G. Wilson v, Dec 12 2012

a(58) > 6*10^11. - Giovanni Resta, Dec 14 2012

See also A303260 for a different generalization: n X n circulant determinant having its base n+1 digits equal to a row. - M. F. Hasler, Apr 23 2018

LINKS

Giovanni Resta, Table of n, a(n) for n = 1..57 (first 47 terms from Robert G. Wilson v)

Max Alekseyev, Illustration for a(40) = 456790123

N. I. Belukhov, Solution to Problem 14.7 (in Russian), Matematicheskoe Prosveshchenie 15 (2011), pp. 241-244.

Wikipedia, Circulant matrix

EXAMPLE

          | 2 4 7 |

247 = det | 7 2 4 |

          | 4 7 2 |

MATHEMATICA

f[n_] := Det[ NestList[ RotateRight@# &, IntegerDigits@ n, Floor[ Log10[n] + 1] - 1]]; k = 1; lst = {}; While[k < 1120000000, a = f@ k; If[a == k, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Nov 20 2012 *)

PROG

(PARI) { isA219324(n) = local(d, m, r); d=eval(Vec(Str(n))); m=#d; r=Mod(x, polcyclo(m)); prod(j=1, m, sum(i=1, m, d[i]*r^((i-1)*j)))==n }

CROSSREFS

Cf. A219325 (binary digits), A219326 (digits in reverse order), A219327 (absolute value of determinant).

Sequence in context: A137667 A117954 A029966 * A085134 A229761 A004882

Adjacent sequences:  A219321 A219322 A219323 * A219325 A219326 A219327

KEYWORD

base,nonn,nice

AUTHOR

Max Alekseyev, Nov 17 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 16:08 EST 2019. Contains 329241 sequences. (Running on oeis4.)