OFFSET
0,3
COMMENTS
Compare to the LambertW identity:
Sum_{n>=0} n^n * x^n * G(x)^n/n! * exp(-n*x*G(x)) = 1/(1 - x*G(x)).
EXAMPLE
O.g.f.: A(x) = 1 + x + 8*x^2 + 128*x^3 + 3259*x^4 + 120082*x^5 +...
where
A(x) = 1 + x*A(x)*exp(-x*A(x)) + 2^4*x^2*A(2*x)^2/2!*exp(-2^2*x*A(2*x)) + 3^6*x^3*A(3*x)^3/3!*exp(-3^2*x*A(3*x)) + 4^8*x^4*A(4*x)^4/4!*exp(-4^2*x*A(4*x)) + 5^10*x^5*A(5*x)^5/5!*exp(-5^2*x*A(5*x)) +...
simplifies to a power series in x with integer coefficients.
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, k^(2*k)*x^k*subst(A, x, k*x)^k/k!*exp(-k^2*x*subst(A, x, k*x)+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 16 2012
STATUS
approved