This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A219209 Maximal product of all parts of a partition of n into distinct divisors of n. 2
 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 48, 13, 14, 15, 16, 17, 162, 19, 200, 21, 22, 23, 1152, 25, 26, 27, 784, 29, 1350, 31, 32, 33, 34, 35, 15552, 37, 38, 39, 6400, 41, 2058, 43, 44, 45, 46, 47, 73728, 49, 50, 51, 52, 53, 8748, 55, 25088, 57, 58, 59, 864000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 EXAMPLE a(0) = 1: the empty product. a(p) = p for any prime p: [p]-> p. a(12) = 48: [2,4,6]-> 48. a(20) = 200: [1,4,5,10]-> 200. a(24) = 1152: [1,2,3,4,6,8]-> 1152. MAPLE a:= proc(n) local b, l;       l:= sort([numtheory[divisors](n)[]]);       b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,             max(b(n, i-1), `if`(l[i]>n, 0, l[i] *b(n-l[i], i-1)))))           end; forget(b);       b(n, nops(l))     end: seq(a(n), n=0..80); MATHEMATICA a[n_] := a[n] = Module[{b, l}, l = Divisors[n]; b[m_, i_] := b[m, i] = If[m == 0, 1, If[i<1, 0, Max[b[m, i-1], If[l[[i]]>m, 0, l[[i]]*b[m-l[[i]], i-1] ]]]]; b[n, Length[l]]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Feb 16 2017, translated from Maple *) CROSSREFS The number of distinct products are in A219208. Cf. A033630, A092976. Sequence in context: A004851 A066638 A285769 * A223474 A062279 A088599 Adjacent sequences:  A219206 A219207 A219208 * A219210 A219211 A219212 KEYWORD nonn AUTHOR Alois P. Heinz, Nov 14 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 18:35 EDT 2019. Contains 322286 sequences. (Running on oeis4.)