login
A219204
Number of partitions of n into 10 distinct primes.
5
1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 3, 0, 1, 0, 4, 0, 5, 0, 3, 0, 7, 0, 9, 0, 7, 1, 10, 0, 16, 0, 9, 1, 18, 1, 25, 1, 16, 2, 30, 2, 35, 1, 25, 4, 45, 3, 53, 2, 45, 8, 62, 4, 79, 6, 67, 14, 90, 8, 112, 10, 96, 19, 126, 16, 158, 17, 135, 29, 182, 26, 210
OFFSET
129,9
LINKS
FORMULA
G.f.: Sum_{0<i_1<i_2<...<i_10} x^(Sum_{j=1..10} prime(i_j)).
a(n) = [x^n*y^10] Product_{i>=1} (1+x^prime(i)*y).
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1, 0$10], `if`(i<1, [0$11],
zip((x, y)->x+y, b(n, i-1), [0, `if`(ithprime(i)>n, [0$10],
b(n-ithprime(i), i-1)[1..10])[]], 0)))
end:
a:= n-> b(n, numtheory[pi](n))[11]:
seq(a(n), n=129..210);
MATHEMATICA
k = 10; b[n_, i_] := b[n, i] = If[n == 0, Join[{1}, Array[0&, k]], If[i<1, Array[0&, k+1] , Plus @@ PadRight[{b[n, i-1], Join[{0}, If[Prime[i]>n, Array[0&, k], Take[b[n-Prime[i], i-1], k]]]}]]]; a[n_] := b[n, PrimePi[n]][[k+1]]; Table[a[n], {n, 129, 210}] (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *)
CROSSREFS
Column k=10 of A219180.
Sequence in context: A165619 A368118 A328590 * A338264 A353509 A326067
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 14 2012
STATUS
approved