OFFSET
1,1
COMMENTS
Also numbers n such that there exists a decomposition n^2 = a*b*c*d where a,b,c,d are the sides of a bicentric quadrilateral with the area, the inradius and the circumradius integers.
In Euclidean geometry, a bicentric quadrilateral is a convex quadrilateral that has both an incircle and a circumcircle. If the sides are a, b, c, d, then the area is given by A = sqrt(a*b*c*d). The inradius r of a bicentric quadrilateral is determined by the sides a, b, c, d according to r = sqrt(a*b*c*d)/(a+c) = sqrt(a*b*c*d)/(b+d). The circumradius R (the radius of the circumcircle) is given by R = sqrt((ab+cd)(ac+bd)(ad+bc))/4A.
If n is in this sequence, so is n*k^2 for any k > 0. Thus this sequence is infinite.
In view of the preceding comment, one might call "primitive" the elements of the sequence for which there is no k>1 such that n/k^2 is again a term of the sequence. These elements are 2352, 69360, 253920, 645792,... are listed in A219193.
LINKS
Mohammad K. Azarian, Solution to Problem S125: Circumradius and Inradius, Math Horizons, Vol. 16, Issue 2, November 2008, p. 32.
E. Gürel, Solution to Problem 1472, Maximal Area of Quadrilaterals, Math. Mag. 69, 149, 1996.
Martin Josefsson, The area of a Bicentric Quadrilateral, Forum Geometricum (2011) 11:155-164.
Eric Weisstein's World of Mathematics, Cyclic Quadrilateral
Eric Weisstein's World of Mathematics, Bicentric Quadrilateral
EXAMPLE
2352 is in the sequence because, with sides (a,b,c,d) = (56,56,42,42) we obtain :
s = (56+56+42+42)/2 = 98;
A = sqrt(56*56*42*42) = 2352 = sqrt((98-56)(98-56)(98-42)(98-42)) (Brahmagupta’s Formula);
r = 2352/(56+42) =24.
R = sqrt((56*56+42*42)(56*42+56*42)(56*42+56*42))/(4*2352) = 35.
MAPLE
with(numtheory):nn:=15000:for a from 1 to nn do: b:=a: for c from b to nn do: for d from c to c while(sqrt(a*b*c*d)=floor(sqrt(a*b*c*d))) do:s:=(a+b+c+d)/2:a1:=(s-a)*(s-b)*(s-c)*(s-d):a2:=sqrt(a*b*c*d):r1:=a2/(a+c):r2:=a2/(b+d):rr:= sqrt((a*b+c*d) * (a*c+b*d) * (a*d+b*c))/(4*a2):if a1>0 and floor(sqrt(a1))=sqrt(a1) and a2 =floor(a2) and a2=sqrt(a1) and r1=floor(r1) and r2=floor(r2) and r1=r2 and rr =floor(rr) then printf ( "%d %d %d %d %d %d %d\n", a2, a, b, c, d, r1, rr):else fi:od:od:od:
MATHEMATICA
nn=15000; lst={}; Do[s=(2*a+2*d)/2; If[IntegerQ[s], area2=(s-a)*(s-a)*(s-d)*(s-d); area22=a*a*d*d; If[0<area2&&IntegerQ[Sqrt[area2]]&&IntegerQ[Sqrt[area22]&&IntegerQ[Sqrt[area22]/(a+d)]&&IntegerQ[Sqrt[(a*a+d*d)*(a*d+a*d)*(a*d+a*d)/((s-a)*(s-a)*(s-d)*(s-d))]/4]], AppendTo[lst, Sqrt[area22]]]], {a, nn}, {d, a}]; Union[lst]
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Nov 14 2012
STATUS
approved