login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of semicomplete digraphs on n nodes with an "Emperor".
2

%I #14 Nov 13 2012 09:37:39

%S 0,1,2,9,108,3645,354294,100442349,83682825624,205891132094649,

%T 1500946352969991210,32497439772059170685073,

%U 2093390532109442148854046084,401741006974223960704968343445877,229924845755649214047240549209929574046

%N Number of semicomplete digraphs on n nodes with an "Emperor".

%C a(n) is also the number of asymmetric digraphs on n nodes with an "Emperor".

%F a(n) = n*3^((n^2 - 3*n + 2)/2).

%o (Maxima) A219116(n):=n*3^((n^2-3*n+2)/2)$ makelist(A219116(n),n,0,14); /* _Martin Ettl_, Nov 13 2012 */

%Y See also A123903 for tournaments and A217652 for digraphs.

%K nonn

%O 0,3

%A _Rémy-Robert Joseph_, Nov 12 2012