login
Hilltop maps: number of nX4 binary arrays indicating the locations of corresponding elements not exceeded by any horizontal, diagonal or antidiagonal neighbor in a random 0..1 nX4 array
1

%I #4 Nov 11 2012 14:20:04

%S 9,165,2321,32945,477309,6879341,99118753,1428782305,20594013941,

%T 296830835781,4278398369137,61667023808785,888841954030797,

%U 12811387949686973,184657868037699425,2661579521073401057

%N Hilltop maps: number of nX4 binary arrays indicating the locations of corresponding elements not exceeded by any horizontal, diagonal or antidiagonal neighbor in a random 0..1 nX4 array

%C Column 4 of A219078

%H R. H. Hardin, <a href="/A219074/b219074.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 11*a(n-1) +33*a(n-2) +233*a(n-3) +13*a(n-4) -31*a(n-5) -657*a(n-6) -321*a(n-7) -288*a(n-8) -64*a(n-9) +64*a(n-10)

%e Some solutions for n=3

%e ..1..1..0..1....0..1..0..0....1..1..0..0....0..0..1..1....1..1..1..0

%e ..1..1..1..1....0..1..1..1....1..1..1..1....0..1..1..0....0..0..1..1

%e ..0..0..1..1....0..0..1..0....1..0..0..0....1..0..1..1....1..1..1..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Nov 11 2012