login
A219056
a(n) = 3*n^4.
5
0, 3, 48, 243, 768, 1875, 3888, 7203, 12288, 19683, 30000, 43923, 62208, 85683, 115248, 151875, 196608, 250563, 314928, 390963, 480000, 583443, 702768, 839523, 995328, 1171875, 1370928, 1594323, 1843968, 2121843, 2430000, 2770563, 3145728, 3557763, 4009008
OFFSET
0,2
FORMULA
a(n) = A219069(n,n) for n > 0;
a(n) = A008585(A000583(n)) = A000290(n)*A033428(n).
From Chai Wah Wu, Jun 22 2016: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
G.f.: 3*x*(1 + x)*(1 + 10*x + x^2)/(1 - x)^5. (End)
E.g.f.: 3*x*(1 + 7*x + 6*x^2 + x^3)*exp(x). - G. C. Greubel, Jun 22 2016
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 3, 48, 243, 768}, 100] (* or *) Table[3*n^4, {n, 0, 50}] (* _G. Greubel_, Jun 22 2016 *)
PROG
(Haskell)
a219056 = (* 3) . (^ 4)
(Maxima) makelist(3*n^4, n, 0, 30); /* Martin Ettl, Nov 12 2012 */
(PARI) a(n) = 3*n^4; \\ Michel Marcus, Jan 26 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Nov 11 2012
STATUS
approved