login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A218987 Power ceiling sequence of 2+sqrt(7). 3
5, 24, 112, 521, 2421, 11248, 52256, 242769, 1127845, 5239688, 24342288, 113088217, 525379733, 2440783584, 11339273536, 52679444897, 244735600197, 1136980735480, 5282129742512, 24539461176489, 114004233933493, 529635319263440, 2460553978854240 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A214992 for a discussion of power ceiling sequence and the power ceiling function, p4(x) = limit of a(n,x)/x^n.  The present sequence is a(n,r), where r = 2+sqrt(7), and the limit p4(r) = 5.19758760498048832156707270895307875397561324042...

See A218986 for the power floor function, p1(x); for comparison of p1 and p4, limit(p4(r)/p1(r) = 4 - sqrt(7).

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..250

Index entries for linear recurrences with constant coefficients, signature (5,-1,-3).

FORMULA

a(n) = ceiling(x*a(n-1)), where x=2+sqrt(7), a(0) = ceiling(x).

a(n) = 5*a(n-1) - a(n-2) - 3*a(n-3).

G.f.:  (5 - x - 3*x^2)/(1 - 5*x + x^2 + 3*x^3).

a(n) = (-14+(217-83*sqrt(7))*(2-sqrt(7))^n+(2+sqrt(7))^n*(217+83*sqrt(7)))/84. - Colin Barker, Sep 02 2016

EXAMPLE

a(0) = ceiling(r) = 5, where r = 2+sqrt(7);

a(1) = ceiling(5*r) = 24; a(2) = ceiling(24*r) = 112.

MATHEMATICA

(See A218986.)

PROG

(PARI) a(n) = round((-14+(217-83*sqrt(7))*(2-sqrt(7))^n+(2+sqrt(7))^n*(217+83*sqrt(7)))/84) \\ Colin Barker, Sep 02 2016

(PARI) Vec((5-x-3*x^2)/((1-x)*(1-4*x-3*x^2)) + O(x^30)) \\ Colin Barker, Sep 02 2016

CROSSREFS

Cf. A214992, A015530, A126473, A218986.

Sequence in context: A296770 A081104 A079028 * A272257 A141223 A289783

Adjacent sequences:  A218984 A218985 A218986 * A218988 A218989 A218990

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Nov 11 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 06:40 EST 2019. Contains 320371 sequences. (Running on oeis4.)