%I #9 Nov 01 2024 05:11:08
%S 3,6,14,31,70,156,349,780,1745,3901,8723,19505,43615,97526,218075,
%T 487630,1090374,2438150,5451870,12190751,27259348,60953755,136296740,
%U 304768775,681483699,1523843876,3407418494,7619219380,17037092470
%N Power ceiling-floor sequence of sqrt(5).
%C See A214992 for a discussion of power ceiling-floor sequence and power ceiling-floor function, p3(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = sqrt(5), and the limit p3(r) = 2.79135723025040661923369247589566824549062...
%H Clark Kimberling, <a href="/A218982/b218982.txt">Table of n, a(n) for n = 0..250</a>
%F a(n) = floor(x*a(n-1)) if n is odd, a(n) = ceiling(x*a(n-1)) if n is even, where x=sqrt(5) and a(0) = ceiling(x).
%e a(0) = ceiling(r) = 3, where r = sqrt(5);
%e a(1) = floor(3*r) = 6; a(2) = ceiling(6*r) = 14.
%t (See A214999.)
%Y Cf. A214992, A214999, A215091, A218983.
%K nonn,easy,changed
%O 0,1
%A _Clark Kimberling_, Nov 10 2012