login
A218876
Triangle read by rows: T(n,k) (1 <= k <= n) = number of non-robust primitive binary sequences of length n and curling number k.
2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 10, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,11
LINKS
B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, arXiv:1212.6102, Dec 25 2012.
B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.
N. J. A. Sloane, On Curling Numbers of Integer Sequences, Combinatorics on Words Conference, Fields Institute, Toronto, April 22, 2013.
N. J. A. Sloane, First 36 rows of table
FORMULA
The triangle in A218869 is the sum of triangles A218875 and A218876.
EXAMPLE
Triangle begins:
[0],
[0, 0],
[0, 0, 0],
[0, 0, 0, 0],
[2, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[4, 0, 0, 0, 0, 0, 0],
[2, 2, 0, 0, 0, 0, 0, 0],
[6, 0, 0, 0, 0, 0, 0, 0, 0],
[6, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[12, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0],
[10, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Nov 15 2012
STATUS
approved