login
Triangle read by rows: T(n,k) (1 <= k <= n) = number of robust primitive binary sequences of length n and curling number k.
3

%I #26 Aug 02 2014 06:14:09

%S 2,2,0,4,2,0,6,4,2,0,10,12,4,2,0,20,20,8,4,2,0,36,52,20,8,4,2,0,72,98,

%T 36,16,8,4,2,0,142,214,76,36,16,8,4,2,0,280,414,160,68,32,16,8,4,2,0,

%U 560,870,326,140,68,32,16,8,4,2,0,1114,1720,640,276,132,64,32,16,8,4,2,0

%N Triangle read by rows: T(n,k) (1 <= k <= n) = number of robust primitive binary sequences of length n and curling number k.

%H B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="http://arxiv.org/abs/1212.6102">On Curling Numbers of Integer Sequences</a>, arXiv:1212.6102, Dec 25 2012.

%H B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Sloane/sloane3.html">On Curling Numbers of Integer Sequences</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.

%H N. J. A. Sloane, <a href="/A218875/a218875.txt">First 36 rows of table</a>

%H <a href="/index/Cu#curling_numbers">Index entries for sequences related to curling numbers</a>

%F The triangle in A218869 is the sum of triangles A218875 and A218876.

%e Triangle begins:

%e [2],

%e [2, 0],

%e [4, 2, 0],

%e [6, 4, 2, 0],

%e [10, 12, 4, 2, 0],

%e [20, 20, 8, 4, 2, 0],

%e [36, 52, 20, 8, 4, 2, 0],

%e [72, 98, 36, 16, 8, 4, 2, 0],

%e [142, 214, 76, 36, 16, 8, 4, 2, 0],

%e [280, 414, 160, 68, 32, 16, 8, 4, 2, 0],

%e ...

%Y Cf. A216955, A218869, A218876. First column is A216958.

%K nonn,tabl

%O 1,1

%A _N. J. A. Sloane_, Nov 15 2012