%I #10 Nov 22 2015 21:43:46
%S 1,-1,2,1,-6,6,0,1,-3,2,-1,0,30,-60,30,0,-1,0,10,-15,6,1,0,-21,0,105,
%T -126,42,0,1,0,-7,0,21,-21,6,-1,0,20,0,-70,0,140,-120,30,0,-3,0,20,0,
%U -42,0,60,-45,10,5,0,-99,0,330,0,-462,0,495,-330,66,0,5,0
%N Triangle read by rows, coefficients of the Bernoulli polynomials B_{n}(x) times A144845(n) in increasing powers.
%C See A213615 for the polynomials in decreasing powers.
%H T. D. Noe, <a href="/A218853/b218853.txt">Rows n = 0..100 of triangle, flattened</a>
%p A218853_row := n -> seq(coeff(numer(bernoulli(n,x)),x,j),j=0..n):
%p seq(A218853_row(n), n = 0..10); # _Peter Luschny_, Nov 22 2015
%t Flatten[Table[ p = CoefficientList[BernoulliB[n, x], x]; (LCM @@ Denominator[p])*p, {n, 0, 10}]]
%Y Cf. A213615.
%K sign,tabl
%O 0,3
%A _T. D. Noe_, Nov 07 2012