login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A218750 a(n) = (47^n-1)/46. 4
0, 1, 48, 2257, 106080, 4985761, 234330768, 11013546097, 517636666560, 24328923328321, 1143459396431088, 53742591632261137, 2525901806716273440, 118717384915664851681, 5579717091036248029008, 262246703278703657363377 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Partial sums of powers of 47 (A009991).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..600

Index entries related to partial sums

Index entries related to q-numbers

Index entries for linear recurrences with constant coefficients, signature (48,-47)

FORMULA

a(n) = floor(47^n/46).

G.f.: x/(47*x^2-48*x+1) = x/((1-x)*(1-47*x)). [Colin Barker, Nov 06 2012]

a(0)=0, a(n) = 47*a(n-1) + 1. - Vincenzo Librandi, Nov 08 2012

MATHEMATICA

Table[(47^n - 1)/46, {n, 0, 19}] (* Alonso del Arte, Nov 04 2012 *)

LinearRecurrence[{48, -47}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)

PROG

(PARI) A218750(n)=47^n\46

(Maxima) A218750(n):=(47^n-1)/46$ makelist(A218750(n), n, 0, 30); /* Martin Ettl, Nov 07 2012 */

(MAGMA) [n le 2 select n-1 else 48*Self(n-1) - 47*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012

CROSSREFS

Cf. similar sequences of the form (k^n-1)/(k-1): A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A002275, A016123, A016125, A091030, A135519, A135518, A131865, A091045, A218721, A218722, A064108, A218724-A218734, A132469, A218736-A218753, A133853, A094028, A218723.

Sequence in context: A170729 A063822 A170767 * A263504 A158783 A227139

Adjacent sequences:  A218747 A218748 A218749 * A218751 A218752 A218753

KEYWORD

nonn,easy

AUTHOR

M. F. Hasler, Nov 04 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 04:56 EDT 2019. Contains 322310 sequences. (Running on oeis4.)