%I #20 Aug 27 2024 21:53:19
%S 0,1,30,871,25260,732541,21243690,616067011,17865943320,518112356281,
%T 15025258332150,435732491632351,12636242257338180,366451025462807221,
%U 10627079738421409410,308185312414220872891,8937374060012405313840,259183847740359754101361
%N a(n) = (29^n - 1)/28.
%C Partial sums of powers of 29 (A009973).
%H Vincenzo Librandi, <a href="/A218732/b218732.txt">Table of n, a(n) for n = 0..600</a>
%H <a href="/index/Par#partial">Index entries related to partial sums</a>.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (30,-29).
%F a(n) = floor(29^n/28).
%F G.f.: x/((1-x)*(1-29*x)). - _Vincenzo Librandi_, Nov 07 2012
%F a(n) = 30*a(n-1) - 29*a(n-2). - _Vincenzo Librandi_, Nov 07 2012
%F E.g.f.: exp(15*x)*sinh(14*x)/14. - _Elmo R. Oliveira_, Aug 27 2024
%t LinearRecurrence[{30, -29}, {0, 1}, 30] (* _Vincenzo Librandi_, Nov 07 2012 *)
%o (PARI) a(n)=29^n\28
%o (Magma) [n le 2 select n-1 else 30*Self(n-1)-29*Self(n-2): n in [1..20]]; // _Vincenzo Librandi_, Nov 07 2012
%o (Maxima) A218732(n):=(29^n-1)/28$
%o makelist(A218732(n),n,0,30); /* _Martin Ettl_, Nov 07 2012 */
%Y Cf. similar sequences of the form (k^n-1)/(k-1): A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A002275, A016123, A016125, A091030, A135519, A135518, A131865, A091045, A218721, A218722, A064108, A218724-A218734, A132469, A218736-A218753, A133853, A094028, A218723.
%Y Cf. A009973.
%K nonn,easy
%O 0,3
%A _M. F. Hasler_, Nov 04 2012