login
A218713
a(n) is smallest number such that a(n)^2 + 1 is divisible by 37^n.
7
0, 6, 117, 9466, 800982, 6423465, 756360062, 24900904028, 1019349744435, 15069267560119, 794839706330581, 71333925879937154, 2419512779032508628, 116073623326088126430, 359642847542169431827, 144552623583462302226851, 3523356323886506075746572
OFFSET
0,2
EXAMPLE
a(3) = 9466 because 9466^2+1 = 29 * 37 ^ 3 * 61.
MATHEMATICA
b=6; n37=37; jo=Join[{0, b}, Table[n37=37*n37; b=PowerMod[b, 37, n37]; b=Min[b, n37-b], {99}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Nov 04 2012
STATUS
approved