login
A218704
Number of partitions of n in which any two distinct parts differ by at least 9.
2
1, 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 3, 8, 6, 9, 12, 14, 14, 20, 19, 24, 28, 29, 31, 41, 40, 44, 49, 54, 54, 69, 64, 77, 82, 94, 98, 119, 118, 139, 149, 173, 178, 215, 217, 253, 274, 306, 320, 375, 385, 440, 469, 521, 545, 626, 647, 718, 769, 838, 881, 994, 1026
OFFSET
0,3
COMMENTS
Also number of partitions of n in which each part, with the possible exception of the largest, occurs at least 9 times.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
FORMULA
G.f.: 1 + Sum_{j>=1} x^j/(1-x^j) * Product_{i=1..j-1} (1+x^(9*i)/(1-x^i)).
log(a(n)) ~ sqrt((2*Pi^2/3 + 4*c)*n), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-9*x)) dx = -1.1777463281753839250026821894706693162991897931... - Vaclav Kotesovec, Jan 28 2022
EXAMPLE
a(10) = 4: [1,1,1,1,1,1,1,1,1,1], [2,2,2,2,2], [5,5], [10].
a(11) = 3: [1,1,1,1,1,1,1,1,1,1,1], [1,10], [11].
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-9), j=1..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..70);
CROSSREFS
Column k=9 of A218698.
Cf. A160979.
Sequence in context: A193459 A114102 A193513 * A144373 A086292 A335708
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 04 2012
STATUS
approved