login
A218682
E.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n/n! * A(n*x)^n.
3
1, 1, 6, 93, 2944, 167685, 16037376, 2481455137, 609371157312, 235171042752105, 141778378915235200, 132871933962627534741, 192678752056300896500544, 430404642833695770472870573, 1474859949355240010986735351872, 7723091241704594423130951106689225
OFFSET
0,3
LINKS
EXAMPLE
E.g.f.: A(x) = 1 + x + 6*x^2/2! + 93*x^3/3! + 2944*x^4/4! + 167685*x^5/5! +...
where
A(x) = 1 + x*A(x) + 2^2*x^2*A(2*x)^2/2! + 3^3*x^3*A(3*x)^3/3! + 4^4*x^4*A(4*x)^4/4! +...
MATHEMATICA
m = 16; A[_] = 0;
Do[A[x_] = Sum[If[n == 0, 1, n^n x^n/n! A[n x]^n], {n, 0, m}] + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] * Range[0, m - 1]! (* Jean-François Alcover, Oct 03 2019 *)
PROG
(PARI) {a(n)=local(A=1); for(i=1, n, A=sum(k=0, n, k^k*x^k/k!*subst(A, x, k*x)^k+x*O(x^n))); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A103212 A359928 A033935 * A078103 A221525 A321073
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 05 2012
STATUS
approved