OFFSET
0,3
COMMENTS
Compare the o.g.f. to the curious identity:
1/(1-x^2) = Sum_{n>=0} (1+n*x)^n * x^n/n! * exp(-x*(1+n*x)).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..350
EXAMPLE
O.g.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 26*x^4 + 116*x^5 + 556*x^6 + 2927*x^7 +...
where
A(x) = 1 + (1+x)*x*exp(-x*(1+x)) + 2^2*(1+2*x)^2*x^2/2!*exp(-2*x*(1+2*x)) + 3^3*(1+3*x)^3*x^3/3!*exp(-3*x*(1+3*x)) + 4^4*(1+4*x)^4*x^4/4!*exp(-4*x*(1+4*x)) + 5^5*(1+5*x)^5*x^5/5!*exp(-5*x*(1+5*x)) +...
simplifies to a power series in x with integer coefficients.
PROG
(PARI) {a(n)=local(A=1+x); A=sum(k=0, n, k^k*(1+k*x)^k*x^k/k!*exp(-k*x*(1+k*x)+x*O(x^n))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 04 2012
STATUS
approved