login
a(n) = A179016(n)-A213708(n)
9

%I #12 Nov 10 2012 14:15:06

%S 0,0,1,0,1,0,1,3,0,1,3,2,3,0,1,3,2,2,1,1,1,3,0,1,3,2,2,1,1,1,2,1,1,0,

%T 1,0,0,0,1,0,1,3,2,2,1,1,1,2,1,1,0,1,0,0,0,0,1,1,0,1,1,3,5,3,5,4,2,3,

%U 5,0,1,3,2,2,1,1,1,2,1,1,0,1,0,0,0,0,1

%N a(n) = A179016(n)-A213708(n)

%C For all n, the following holds: A213708(n) <= A179016(n) <= A173601(n). This sequence gives the distance of the node n in the infinite trunk of beanstalk (A179016(n)) from the lesser edge of the A086876(n) wide window which it at that point must pass through.

%C The increasing steps seem to be quite constrained in their magnitude, compared to the decreasing steps. (This depends on how the "tendrils", i.e. the finite side-trees on the other side of the infinite trunk grow and reach their tops).

%H Antti Karttunen, <a href="/A218603/b218603.txt">Table of n, a(n) for n = 0..8727</a>

%o (Scheme): (define (A218603 n) (- (A179016 n) (A213708 n)))

%Y a(n) = A086876(n)-A218604(n)-1. Positions of zeros: A218607, A218605.

%K nonn

%O 0,8

%A _Antti Karttunen_, Nov 03 2012

%E Offset changed because of the changed offset of A179016 - _Antti Karttunen_, Nov 10 2012