login
Hilltop maps: number of nX6 binary arrays indicating the locations of corresponding elements not exceeded by any horizontal or antidiagonal neighbor in a random 0..2 nX6 array
1

%I #4 Nov 03 2012 13:39:15

%S 49,3565,225647,14313773,908914463,57707873919,3663996495065,

%T 232634494299223,14770432493750847,937804521455278797,

%U 59543098444313115311,3780511282396595054063,240032277959119287777081

%N Hilltop maps: number of nX6 binary arrays indicating the locations of corresponding elements not exceeded by any horizontal or antidiagonal neighbor in a random 0..2 nX6 array

%C Column 6 of A218592

%H R. H. Hardin, <a href="/A218590/b218590.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 49*a(n-1) +784*a(n-2) +8032*a(n-3) +36736*a(n-4) +128672*a(n-5) +113364*a(n-6) +604540*a(n-7) -442768*a(n-8) +1552544*a(n-9) -2352736*a(n-10) +1296064*a(n-11) -920054*a(n-12) +541894*a(n-13) -439824*a(n-14) +294048*a(n-15) -85440*a(n-16) +68256*a(n-17) -16524*a(n-18) +14652*a(n-19) -9072*a(n-20) +864*a(n-21) -864*a(n-22) -81*a(n-24) +81*a(n-25) for n>27

%e Some solutions for n=3

%e ..0..0..1..1..0..1....0..0..0..0..0..0....0..1..1..0..1..0....0..0..1..0..0..0

%e ..1..0..1..0..1..1....1..1..0..1..0..1....0..1..1..0..1..1....0..0..0..0..1..1

%e ..1..0..0..0..0..0....0..0..0..1..1..0....0..0..0..0..0..1....1..0..0..0..0..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Nov 03 2012