

A218585


Number of ways to write n as x+y with 0<x<=y and x^2+xy+y^2 prime.


13



0, 1, 1, 1, 1, 1, 2, 0, 3, 1, 2, 1, 3, 2, 3, 2, 2, 1, 4, 1, 4, 3, 4, 2, 3, 3, 3, 3, 5, 2, 6, 2, 4, 4, 5, 3, 5, 2, 8, 4, 4, 4, 7, 3, 5, 2, 8, 4, 7, 2, 8, 4, 7, 5, 7, 4, 7, 3, 8, 4, 9, 3, 11, 4, 8, 5, 10, 4, 9, 5, 9, 6, 8, 5, 6, 6, 10, 5, 10, 3, 12, 7, 10, 6, 8, 6, 11, 4, 7, 4, 15, 8, 13, 6, 9, 5, 15, 9, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,7


COMMENTS

Conjecture: a(n)>0 for all n>1 with the only exception n=8.
Note that any prime p=1(mod 3) can be written uniquely in the form x(p)^2+x(p)y(p)+y(p)^2 with x(p)>y(p)>0.
ZhiWei Sun also conjectured that
(sum_{p<N, p=1(mod 3)}x(p))/(sum_{p<N, p=1(mod 3)}y(p)) tends to 1+sqrt(3), and (sum_{p<N, p=1(mod 3)}x(p)^2)/(sum_{p<N, p=1(mod 3)}y(p)^2) tends to 52/9. Similar conjectures involving p=x^2+y^2 were recently formulated by Thomas Ordowski.
Or, the number of primes of the form n*x+(nx)^2 with 0<x<n/2.
Suggestion: the number of primes of the form n*x+(nx)^2 with 0<x<n/3 is positive for n>12.  Zak Seidov_, Sep 25 2013


REFERENCES

Thomas Ordowski, Personal email messages, Oct. 34, 2012, and Nov. 3, 2012.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..20000
ZhiWei Sun, Conjectures involving primes and quadratic forms, arXiv preprint arXiv:1211.1588, 2012.


EXAMPLE

For n=20 we have a(20)=1 since x^2+x(20x)+(20x)^2 with 0<x<=10 is prime only when x=3.


MATHEMATICA

A[n_]:=A[n]=Sum[If[PrimeQ[x^2+x(nx)+(nx)^2]==True, 1, 0], {x, 1, n/2}]
Do[Print[n, " ", A[n]], {n, 1, 20000}]


PROG

(PARI) A218585(n)=sum(x=1, n\2, isprime(x^2+x*(nx)+(nx)^2)) \\  M. F. Hasler, Nov 03 2012


CROSSREFS

Cf. A002476.
Sequence in context: A051709 A318326 A293813 * A279507 A054656 A080096
Adjacent sequences: A218582 A218583 A218584 * A218586 A218587 A218588


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Nov 03 2012


STATUS

approved



