login
9th iteration of the hyperbinomial transform on the sequence of 1's.
3

%I #8 Oct 18 2013 15:11:37

%S 1,10,118,1621,25588,458605,9232894,206835751,5113191304,138473150833,

%T 4081818946330,130223467785619,4473867764956204,164772507070721989,

%U 6479598382677480286,271083794667222927655,12026359894442420178064,564099525344446492486105

%N 9th iteration of the hyperbinomial transform on the sequence of 1's.

%C See A088956 for the definition of the hyperbinomial transform.

%H Alois P. Heinz, <a href="/A218501/b218501.txt">Table of n, a(n) for n = 0..150</a>

%F E.g.f.: exp(x) * (-LambertW(-x)/x)^9.

%F a(n) = Sum_{j=0..n} 9 * (n-j+9)^(n-j-1) * C(n,j).

%F Hyperbinomial transform of A218500.

%F a(n) ~ 9*exp(9+exp(-1))*n^(n-1). - _Vaclav Kotesovec_, Oct 18 2013

%p a:= n-> add(9*(n-j+9)^(n-j-1)*binomial(n,j), j=0..n):

%p seq (a(n), n=0..20);

%t Table[Sum[9*(n-j+9)^(n-j-1)*Binomial[n,j],{j,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 18 2013 *)

%Y Column k=9 of A144303.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Oct 30 2012