login
A218458
a(n) = 2*n^3 - 163*n^2 + 2777*n - 11927.
1
-11927, -9311, -7009, -5009, -3299, -1867, -701, 211, 881, 1321, 1543, 1559, 1381, 1021, 491, -197, -1031, -1999, -3089, -4289, -5587, -6971, -8429, -9949, -11519, -13127, -14761, -16409, -18059, -19699, -21317, -22901, -24439, -25919
OFFSET
0,1
COMMENTS
A prime-producing cubic polynomial. Produces 78 distinct primes if we scan the absolute values of the first 100 terms.
FORMULA
G.f.: (-11927+38397*x-41327*x^2+14869*x^3)/(x-1)^4. - R. J. Mathar, Nov 07 2012
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, Apr 21 2021
MATHEMATICA
Table[2n^3-163n^2+2777n-11927, {n, 0, 99}]
LinearRecurrence[{4, -6, 4, -1}, {-11927, -9311, -7009, -5009}, 40] (* Harvey P. Dale, Jan 31 2017 *)
PROG
(Maxima) A218458(n):=2*n^3-163*n^2+2777*n-11927$
makelist(A218458(n), n, 0, 30); /* Martin Ettl, Nov 08 2012 */
(Magma) [2*n^3 - 163*n^2 + 2777*n - 11927 : n in [0..60]]; // Wesley Ivan Hurt, Apr 21 2021
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Pedja Terzic, Oct 29 2012
STATUS
approved