login
A218456
2*n^3 - 313*n^2 + 6823*n - 13633.
3
-13633, -7121, -1223, 4073, 8779, 12907, 16469, 19477, 21943, 23879, 25297, 26209, 26627, 26563, 26029, 25037, 23599, 21727, 19433, 16729, 13627, 10139, 6277, 2053, -2521, -7433, -12671, -18223, -24077, -30221, -36643, -43331, -50273, -57457
OFFSET
0,1
COMMENTS
A prime-producing cubic polynomial. Produces 79 distinct primes if we scan the absolute values of the first 100 terms..
FORMULA
G.f.: (20771*x^3-54537*x^2+47411*x-13633)/(x-1)^4. [Colin Barker, Nov 10 2012]
MATHEMATICA
Table[2n^3-313n^2+6823n-13633, {n, 0, 99}]
LinearRecurrence[{4, -6, 4, -1}, {-13633, -7121, -1223, 4073}, 40] (* Harvey P. Dale, May 03 2018 *)
PROG
(Maxima) A218456(n):=2*n^3-313*n^2+6823*n-13633$
makelist(A218456(n), n, 0, 30); /* Martin Ettl, Nov 08 2012 */
CROSSREFS
Sequence in context: A232447 A237893 A206091 * A224971 A185471 A203727
KEYWORD
sign,easy
AUTHOR
Pedja Terzic, Oct 29 2012
STATUS
approved