login
A218395
Numbers whose square is the sum of the squares of 11 consecutive integers.
13
11, 77, 143, 1529, 2849, 30503, 56837, 608531, 1133891, 12140117, 22620983, 242193809, 451285769, 4831736063, 9003094397, 96392527451, 179610602171, 1923018812957, 3583208949023, 38363983731689, 71484568378289, 765356655820823, 1426108158616757
OFFSET
0,1
COMMENTS
a(n)^2 = Sum_{j=0..10} (x(n)+j)^2 = 11*(x(n)+5)^2 + 110 and b(n) = x(n)+5 give the Pell equation a(n)^2 - 11*b(n)^2 = 110 with the 2 fundamental solutions (11; 1) and (77; 23) and the solution (10; 3) for the unit form. A198949(n+1) = b(n); A106521(n) = x(n) and x(0) = -4.
General: If the sum of the squares of c neighboring numbers is a square with c = 3*k^2-1 and 1 <= k, then a(n)^2 = Sum_{j=0..c-1} (x(n)+j)^2 and b(n) = 2*x(n)+c-1 give the Pell equation a(n)^2 - c*(b(n)/2)^2 = binomial(c+1,3)/2. a(n) = 2*e1*a(n-k) - a(n-2*k); b(n) = 2*e1*b(n-k) - b(n-2*k); a(n) = e1*a(n-k) + c*e2*b(n-k); b(n) = e2*a(n-k) + e1*b(n-k) with the solution (e1; e2) for the unit form.
FORMULA
a(n) = 20*a(n-2) - a(n-4); b(n) = 20*b(n-2) - b(n-4);
a(n) = 10*a(n-2) + 33*b(n-2); b(n) = 3*a(n-2) + 10*b(n-2).
a(n) = a(n-1) + 20*a(n-2) - 20*a(n-3) - a(n-4) + a(n-5).
G.f.: 11 * (1-x)*(1+8*x+x^2) / (1 - 20*x^2 + x^4).
With r=sqrt(11); s=10+3*r; t=10-3*r:
a(2*n) = ((11+r)*s^n + (11-r)*t^n)/2.
a(2*n+1) = ((77+23*r) * s^n + (77-23*r)*t^n)/2.
a(n) = 11 * A198947(n+1). - Bill McEachen, Dec 01 2022
EXAMPLE
For n=6, Sum_{z=17132..17142} z^2 = 3230444569;
a(6) = sqrt(3230444569) = 56837;
b(6) = sqrt((a(6)^2-110)/11) = 17137; x(6) = b(6)-5 = 17132.
MAPLE
s:=0: n:=-1:
for j from -5 to 5 do s:=s+j^2: end do:
for z from -4 to 100000 do
s:=s-(z-1)^2+(z+10)^2: r:=sqrt(s):
if (r=floor(r)) then
n:=n+1: a(n):=r: x(n):=z:
b(n):=sqrt((s-110)/11):
print(n, a(n), b(n), x(n)):
end if:
end do:
MATHEMATICA
LinearRecurrence[{0, 20, 0, -1}, {11, 77, 143, 1529}, 30] (* Harvey P. Dale, Aug 15 2022 *)
CROSSREFS
c=2: A001653(n+1) = a(n); A002315(n) = b(n); A001652(n) = x(n).
Cf. A001032 (11 is a term of that sequence), A198947.
Sequence in context: A232032 A272395 A305727 * A208599 A325733 A059625
KEYWORD
nonn,easy
AUTHOR
Paul Weisenhorn, Oct 28 2012
STATUS
approved