The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A218336 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(11) listed in ascending order. 4
 1, 2, 5, 10, 3, 4, 6, 8, 12, 15, 20, 24, 30, 40, 60, 120, 7, 14, 19, 35, 38, 70, 95, 133, 190, 266, 665, 1330, 16, 48, 61, 80, 122, 183, 240, 244, 305, 366, 488, 610, 732, 915, 976, 1220, 1464, 1830, 2440, 2928, 3660, 4880, 7320, 14640, 25, 50, 3221, 6442 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Alois P. Heinz, Rows n = 1..23, flattened Eric Weisstein's World of Mathematics, Irreducible Polynomial Eric Weisstein's World of Mathematics, Polynomial Order FORMULA T(n,k) = k-th smallest element of M(n) = {d : d|(11^n-1)} \ U(n-1) with U(n) = M(n) union U(n-1) if n>0, U(0) = {}. EXAMPLE Triangle begins: 1,   2,    5,   10; 3,   4,    6,    8,    12,    15,    20,     24,  30,  40, ... 7,  14,   19,   35,    38,    70,    95,    133, 190, 266, ... 16, 48,   61,   80,   122,   183,   240,    244, 305, 366, ... 25, 50, 3221, 6442, 16105, 32210, 80525, 161050; MAPLE with(numtheory): M:= proc(n) M(n):= divisors(11^n-1) minus U(n-1) end: U:= proc(n) U(n):= `if`(n=0, {}, M(n) union U(n-1)) end: T:= n-> sort([M(n)[]])[]: seq(T(n), n=1..5); CROSSREFS Column k=5 of A212737. Last elements of rows give: A024127. Column k=1 gives: A218359. Row lengths are A212957(n,11). Sequence in context: A264784 A306679 A125974 * A059955 A099796 A022831 Adjacent sequences:  A218333 A218334 A218335 * A218337 A218338 A218339 KEYWORD nonn,look,tabf AUTHOR Alois P. Heinz, Oct 26 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 25 08:48 EST 2020. Contains 332221 sequences. (Running on oeis4.)