login
A218305
E.g.f. A(x) satisfies A( x/(exp(3*x)*cosh(3*x)) ) = exp(x)*cosh(x).
10
1, 1, 8, 148, 4256, 166816, 8297600, 500730112, 35547379712, 2902899914752, 268094176428032, 27629598827044864, 3143573312615481344, 391375817676973932544, 52926434374336385122304, 7725597721066205089890304, 1210677595048894480252928000
OFFSET
0,3
COMMENTS
More generally, if A( x/(exp(t*x)*cosh(t*x)) ) = exp(m*x)*cosh(m*x),
then A(x) = Sum_{n>=0} m*(n*t+m)^(n-1) * cosh((n*t+m)*x) * x^n/n!.
FORMULA
E.g.f.: A(x) = Sum_{n>=0} (3*n+1)^(n-1) * cosh((3*n+1)*x) * x^n/n!.
From Seiichi Manyama, Apr 23 2024: (Start)
E.g.f.: A(x) = 1/2 + 1/2 * exp( x - 1/3 * LambertW(-3*x * exp(3*x)) ).
a(n) = 1/2 * Sum_{k=0..n} (3*k+1)^(n-1) * binomial(n,k) for n > 0.
G.f.: 1/2 + 1/2 * Sum_{k>=0} (3*k+1)^(k-1) * x^k/(1 - (3*k+1)*x)^(k+1). (End)
EXAMPLE
E.g.f.: A(x) = 1 + x + 8*x^2/2! + 148*x^3/3! + 4256*x^4/4! + 166816*x^5/5! +...
where
A(x) = cosh(x) + 4^0*cosh(4*x)*x + 7^1*cosh(7*x)*x^2/2! + 10^2*cosh(10*x)*x^3/3! + 13^3*cosh(13*x)*x^4/4! + 16^4*cosh(16*x)*x^5/5! +...
PROG
(PARI) {a(n)=local(Egf=1, X=x+x*O(x^n), R=serreverse(x/(exp(3*X)*cosh(3*X)))); Egf=exp(R)*cosh(R); n!*polcoeff(Egf, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* Formula derived from a LambertW identity: */
{a(n)=local(Egf=1, X=x+x*O(x^n)); Egf=sum(k=0, n, (3*k+1)^(k-1)*cosh((3*k+1)*X)*x^k/k!); n!*polcoeff(Egf, n)}
for(n=0, 25, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 25 2012
STATUS
approved