OFFSET
0,3
FORMULA
G.f. satisfies:
(1) A(x) = (1 + x*A(x)^2)*(1 + 4*x^3*A(x)^6)*(1 + 4*x^4*A(x)^8)/(1 - 2*x^2*A(x)^4)^2.
(2) A(x) = sqrt( (1/x)*Series_Reversion( x*(1 - 2*x^2)^4 / ((1 + x)*(1 + 4*x^3)*(1 + 4*x^4))^2 ) ).
EXAMPLE
G.f.: A(x) = 1 + x + 6*x^2 + 37*x^3 + 274*x^4 + 2154*x^5 + 17896*x^6 +...
Let A = g.f. A(x), then the logarithm of the g.f. equals the series:
log(A(x)) = (1 + 2^2*x*A^2 + 2^2*x^2*A^4)*x*A +
(1 + 4^2*x*A^2 + 8^2*x^2*A^4 + 8^2*x^3*A^6 + 4^2*x^4*A^8)*x^2*A^2/2 +
(1 + 6^2*x*A^2 + 18^2*x^2*A^4 + 32^2*x^3*A^6 + 36^2*x^4*A^8 + 24^2*x^5*A^10 + 8^2*x^6*A^12)*x^3*A^3/3 +
(1 + 8^2*x*A^2 + 32^2*x^2*A^4 + 80^2*x^3*A^6 + 136^2*x^4*A^8 + 160^2*x^5*A^10 + 128^2*x^6*A^12 + 64^2*x^7*A^14 + 16^2*x^8*A^16)*x^4*A^4/4 +...
which involves the squares of the trinomial coefficients A084606(n,k):
1;
1, 2, 2;
1, 4, 8, 8, 4;
1, 6, 18, 32, 36, 24, 8;
1, 8, 32, 80, 136, 160, 128, 64, 16;
1, 10, 50, 160, 360, 592, 720, 640, 400, 160, 32; ...
PROG
(PARI) /* G.f. A(x) using the squares of the trinomial coefficients A084606: */
{A084606(n, k)=polcoeff((1 + 2*x + 2*x^2)^n, k)}
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, 2*m, A084606(m, k)^2*x^k*(A+x*O(x^n))^(2*k))*x^m*A^m/m))); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=local(A=sqrt(serreverse( x*(1 - 2*x^2)^4 / ((1 + x)*(1 + 4*x^3)*(1 + 4*x^4 +x*O(x^n)))^2)/x)); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 27 2012
STATUS
approved