login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A218173 Expansion of f(x^7, x^17) - x^2 * f(x, x^23) in powers of x where f(,) is Ramanujan's two-variable theta function. 1
1, 0, -1, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = x^5, b = x^3.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

Eric Weisstein's World of Mathematics, Quintuple Product Identity

FORMULA

Expansion of f(x, x^7) * chi(-x) in powers of x where f(,) is Ramanujan's two-variable theta function and chi() is a Ramanujan theta function.

G.f.: Sum_{k in Z} x^(12*k^2 + 5*k) - x^(12*k^2 + 11*k + 2).

a(n) = -A010815(2*n + 1).

EXAMPLE

1 - x^2 - x^3 + x^7 + x^17 - x^25 - x^28 + x^38 + x^58 - x^72 - x^77 + x^93 + ...

q^25 - q^121 - q^169 + q^361 + q^841 - q^1225 - q^1369 + q^1849 + q^2809 + ...

MATHEMATICA

a[ n_] := If[ n < 0, 0, If[ OddQ[ DivisorSigma[ 0, 48 n + 25]], JacobiSymbol[ 6, Sqrt[48 n + 25]], 0]]; (* Michael Somos, Nov 09 2014 *)

a[ n_] := SeriesCoefficient[ (QPochhammer[ -q] - QPochhammer[ q]) / 2, {q, 0, 2 n + 1}]; (* Michael Somos, Nov 09 2014 *)

a[ n_] := SeriesCoefficient[ QPochhammer[ q] (QPochhammer[ q^2]^3 / QPochhammer[ q]^2/ QPochhammer[ q^4] - 1) / 2, {q, 0, 2 n + 1}]; (* Michael Somos, Nov 09 2014 *)

PROG

(PARI) {a(n) = local(m); if( issquare( 48*n + 25, &m), kronecker( 6, m), 0)};

(PARI) {a(n) = local(m); if( n<0, 0, m = 2*n + 1; - polcoeff( eta( x + x * O(x^m)), m))};

CROSSREFS

Cf. A010815, A069911.

Sequence in context: A145377 A246260 A275973 * A068426 A267006 A280816

Adjacent sequences:  A218170 A218171 A218172 * A218174 A218175 A218176

KEYWORD

sign

AUTHOR

Michael Somos, Oct 22 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 19:22 EST 2021. Contains 340332 sequences. (Running on oeis4.)