login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A218151 a(n) = 2*3^n*5^(n(n-1)/2). 1
2, 6, 90, 6750, 2531250, 4746093750, 44494628906250, 2085685729980468750, 488832592964172363281250, 572850694879889488220214843750, 3356547040311852470040321350097656250, 98336339071636302833212539553642272949218750 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n) = a(0)*product(i = 1..k) r(i)^C(n,i), with C(n,i) = 0 for all i > n. This is a special case of the geometric-geometric sequence having finite ratios, that is, k consecutive rows of ratios, whose first terms are r(1), r(2), r(3), ..., r(k), the last row (k-th row) being of a constant ratio, with k = 2, a(0) = 2, r(1) = 3, r(2) = 5.

LINKS

Table of n, a(n) for n=0..11.

FORMULA

a(n) = a(n-1)*3*5^(n-1), a(0) = 2.

EXAMPLE

a(3) = 6750 because a(3)= 2*3^3*5^(3*2/2) = 2*3^3*5^3 = 2*27*125 = 6750.

MATHEMATICA

RecurrenceTable[{a[0]==2, a[n]==a[n-1]3*5^(n-1)}, a, {n, 20}] (* Harvey P. Dale, Jul 30 2019 *)

PROG

(Maxima) A218151(n):=2*3^n*5^(n*(n-1)/2)$

makelist(A218151(n), n, 0, 11); /* Martin Ettl, Nov 03 2012 */

CROSSREFS

Cf. A218148, A218149, A218150.

Sequence in context: A128265 A087277 A177861 * A007188 A206156 A229052

Adjacent sequences:  A218148 A218149 A218150 * A218152 A218153 A218154

KEYWORD

nonn

AUTHOR

Mokhtar Mohamed, Oct 23 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 13:25 EDT 2019. Contains 326100 sequences. (Running on oeis4.)