OFFSET
0,5
COMMENTS
Compare g.f. to that of the following triangle variants:
* Pascal's: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)*y^k] * x^n/n );
* Narayana: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*y^k] * x^n/n );
* A181143: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^3*y^k] * x^n/n );
* A181144: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^4*y^k] * x^n/n );
* A218116: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^6*y^k] * x^n/n ).
EXAMPLE
G.f.: A(x,y) = 1 + (1+y)*x + (1+17*y+y^2)*x^2 + (1+98*y+98*y^2+y^3)*x^3 + (1+354*y+2251*y^2+354*y^3+y^4)*x^4 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 2^5*y + y^2)*x^2/2
+ (1 + 3^5*y + 3^5*y^2 + y^3)*x^3/3
+ (1 + 4^5*y + 6^5*y^2 + 4^5*y^3 + y^4)*x^4/4
+ (1 + 5^5*y + 10^5*y^2 + 10^5*y^3 + 5^5*y^4 + y^5)*x^5/5 +...
Triangle begins:
1;
1, 1;
1, 17, 1;
1, 98, 98, 1;
1, 354, 2251, 354, 1;
1, 979, 23803, 23803, 979, 1;
1, 2275, 158367, 617036, 158367, 2275, 1;
1, 4676, 773842, 8763293, 8763293, 773842, 4676, 1;
1, 8772, 3031668, 82498785, 241082026, 82498785, 3031668, 8772, 1;
1, 15333, 10057620, 575963523, 4066874561, 4066874561, 575963523, 10057620, 15333, 1; ...
Note that column 1 forms the sum of fourth powers (A000538).
PROG
(PARI) {T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^5*y^j)*x^m/m)+O(x^(n+1))), n, x), k, y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 21 2012
STATUS
approved