login
A218092
Number of transitive reflexive early confluent binary relations R on n labeled elements with max_{x}(|{y : xRy}|) = 2.
2
3, 12, 61, 310, 1821, 11592, 80963, 608832, 4910785, 42159238, 383478987, 3678859158, 37087880753, 391641822540, 4319860660447, 49647399946048, 593217470459313, 7354718987639958, 94445777492433515, 1254196823154143190, 17198114810490326713
OFFSET
2,1
COMMENTS
R is early confluent iff (xRy and xRz) implies (yRz or zRy) for all x, y, z.
REFERENCES
A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
LINKS
FORMULA
E.g.f.: exp(x*exp(x)+x^2/2)-exp(x).
a(n) = A135312(n) - A000012(n).
MAPLE
egf:= exp(x*exp(x)+x^2/2)-exp(x):
a:= n-> n!* coeff(series(egf, x, n+1), x, n):
seq(a(n), n=2..30);
MATHEMATICA
Drop[CoefficientList[Series[Exp[x Exp[x]+x^2/2]-Exp[x], {x, 0, nn}], x] Range[0, nn]!, 2]] (* Harvey P. Dale, May 03 2014 *)
CROSSREFS
Column k=2 of A135313.
Sequence in context: A002497 A228251 A348200 * A192479 A161799 A182970
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 20 2012
STATUS
approved