login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A217940 Triangle read by rows: coefficients of polynomials Q_n(x) arising in study of Riemann zeta function. 1
1, 1, 1, 4, 4, 4, 36, 33, 42, 33, 576, 480, 648, 720, 456, 14400, 10960, 14900, 18780, 17900, 9460, 518400, 362880, 487200, 648240, 730800, 606480, 274800, 25401600, 16465680, 21656040, 29481585, 36149820, 36569190, 26845140, 10643745, 1625702400, 981872640, 1260878080, 1729096320, 2218287120, 2495765440, 2285697120, 1503969600, 530052880 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Table of n, a(n) for n=1..45.

Juan Arias de Reyna, Richard P. Brent and Jan van de Lune, On the sign of the real part of the Riemann zeta-function, arXiv preprint arXiv:1205.4423, 2012

EXAMPLE

Triangle begins:

1

1, 1

4, 4, 4

36, 33, 42, 33

576, 480, 648, 720, 456

14400, 10960, 14900, 18780, 17900, 9460

518400, 362880, 487200, 648240, 730800, 606480, 274800

...

MATHEMATICA

Clear[q]; q[n_, 1] := (n-1)!^2; q[n_, k_] := q[n, k] = Sum[ Binomial[n-1, j]*Binomial[n-1, j+1]* Sum[q[j+1, r]*q[n-j-1, k-r], {r, Max[1, -n+j+k+1], Min[j+1, k-1]}], {j, 0, n-2}]; Table[q[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 13 2013 *)

CROSSREFS

Right-hand diagonal is A002190.

Sequence in context: A024949 A059812 A077725 * A182065 A325487 A239351

Adjacent sequences:  A217937 A217938 A217939 * A217941 A217942 A217943

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane, Oct 23 2012

EXTENSIONS

More terms from Jean-François Alcover, Feb 13 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 14 12:11 EDT 2021. Contains 342949 sequences. (Running on oeis4.)