login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A217910 O.g.f.: Sum_{n>=0} n^n*(2*n+1)^(n-1) * exp(-n*(2*n+1)*x) * x^n / n!. 8
1, 1, 7, 125, 3641, 148297, 7792275, 502572905, 38466067169, 3409770740129, 343687137315215, 38829855954523317, 4861184771611069929, 668044273723230765337, 99988042875734734075243, 16191529121372446646518737, 2820684538705808192370559425 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare the g.f. to the LambertW identity:

1 = Sum_{n>=0} (2*n+1)^(n-1) * exp(-(2*n+1)*x) * x^n/n!.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..315

FORMULA

a(n) = 1/n! * Sum_{k=0..n} (-1)^(n-k)*binomial(n,k) * k^n * (2*k+1)^(n-1).

a(n) = 1/n! * [x^n] Sum_{k>=0} k^k*(2*k+1)^(k-1)*x^k / (1 + k*(2*k+1)*x)^(k+1).

a(n) = [x^n] 1 + x*(1+x)^(n-1) / Product_{k=1..n} (1 - 2*k*x).

a(n) = [x^n] 1 + x*(1-x)^(n-1) / Product_{k=1..n} (1 - (2*k+1)*x).

a(n) ~ 2^(3*n-9/4) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+1/4)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... = 2*A106533. - Vaclav Kotesovec, May 22 2014

EXAMPLE

O.g.f.: A(x) = 1 + x + 7*x^2 + 125*x^3 + 3641*x^4 + 148297*x^5 + 7792275*x^6 +...

where

A(x) = 1 + 1^1*3^0*x*exp(-1*3*x) + 2^2*5^1*exp(-2*5*x)*x^2/2! + 3^3*7^2*exp(-3*7*x)*x^3/3! + 4^4*9^3*exp(-4*9*x)*x^4/4! + 5^5*11^4*exp(-5*11*x)*x^5/5! +...

simplifies to a power series in x with integer coefficients.

MATHEMATICA

Flatten[{1, Table[Sum[Binomial[n-1, j]*2^j*StirlingS2[n+j, n], {j, 0, n-1}], {n, 1, 20}]}] (* Vaclav Kotesovec, May 22 2014 *)

PROG

(PARI) {a(n)=polcoeff(sum(k=0, n, k^k*(2*k+1)^(k-1)*x^k*exp(-k*(2*k+1)*x+x*O(x^n))/k!), n)}

for(n=0, 30, print1(a(n), ", "))

(PARI) {a(n)=1/n!*polcoeff(sum(k=0, n, k^k*(2*k+1)^(k-1)*x^k/(1+k*(2*k+1)*x +x*O(x^n))^(k+1)), n)}

(PARI) {a(n)=1/n!*sum(k=0, n, (-1)^(n-k)*binomial(n, k)*k^n*(2*k+1)^(n-1))}

for(n=0, 30, print1(a(n), ", "))

(PARI) {a(n)=polcoeff(1+x*(1+x)^(n-1)/prod(k=0, n, 1-2*k*x +x*O(x^n)), n)}

for(n=0, 30, print1(a(n), ", "))

(PARI) {a(n)=polcoeff(1+x*(1-x)^n/prod(k=0, n, 1-(2*k+1)*x +x*O(x^n)), n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A217899, A217900, A217901, A217902, A217903, A217905, A217911.

Sequence in context: A192566 A322090 A304420 * A316276 A220615 A113162

Adjacent sequences:  A217907 A217908 A217909 * A217911 A217912 A217913

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Oct 14 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 19:10 EDT 2019. Contains 324198 sequences. (Running on oeis4.)