OFFSET
1,2
COMMENTS
It can be used for a Lucas-Lehmer test of prime numbers.
The value is equal to e^(log(2 + sqrt(3))/4) = e^A182023.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..1000
FORMULA
Equals (2+sqrt(3))^(1/4). - Vaclav Kotesovec, Oct 18 2014
EXAMPLE
1.389910663524147717911548811992210102196089903539205052651822014331759...
MAPLE
evalf(sqrt(sqrt(2+sqrt(3))), 120); # Muniru A Asiru, Sep 30 2018
MATHEMATICA
RealDigits[N[Sqrt@Sqrt[2 + Sqrt[3]], 200]][[1]]
PROG
(PARI) default(realprecision, 200); x=sqrt(sqrt(2+sqrt(3))); for(n=1, 200, d=floor(x); x=(x-d)*10; print1(d, ", "));
(Maxima) fpprec : 100$ bfloat(sqrt(sqrt(2 + sqrt(3)))); /* Martin Ettl, Oct 15 2012 */
(Magma) SetDefaultRealField(RealField(100)); Sqrt(Sqrt(2 + Sqrt(3))); // G. C. Greubel, Sep 29 2018
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Arkadiusz Wesolowski, Oct 13 2012
STATUS
approved